Cohomologies of Reynolds operators on <i>n</i>-Lie algebras

نویسندگان

چکیده

In this paper, first we introduce the notion of a Reynolds operator on an n-Lie algebra and illustrate relationship between operators derivations algebra. We give cohomology theory study infinitesimal deformations using second group. Then NS-n-Lie algebras, which are generalizations both algebras n-pre-Lie algebras. show that gives rise to together with representation itself. Nijenhuis naturally induce structures. Finally, construct (n+1)-Lie 3-Lie from commutative associative respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

Lie Algebras of Differential Operators and Lie-Algebraic Potentials

An explicit characterisation of all second order differential operators on the line which can be written as bilinear combinations of the generators of a linitedimensional Lie algebra of first order differential operators is found, solving a problem arising in the Lie-algebraic approach to scattering theory and molecular dynamics. One-dimensional potentials corresponding to these Lie algebras ar...

متن کامل

Representations of Lie Algebras by Normal Operators

Recently I. E. Segal [2] has proposed a study of the unitary representations of a complex semisimple Lie group G by studying "analytic" holomorphic representations of G by normal operators. To this end he proved that every unitary representation U of G may be written U(g)=R(g)R(g~1)* (gEG) where R is an analytic holomorphic representation of G by normal operators such that if R(gi) and R(g2) ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2022

ISSN: ['1532-4125', '0092-7872']

DOI: https://doi.org/10.1080/00927872.2022.2113403